
 

Black-Box Testing: 
 
Our black-box testing is a mixture of component and system testing as defined by 
Summerville [1]. Due to the nature of the product, we found it hard to test individual 
components in this way without a large portion of the system. For example, rendering of 
sprites can’t be done without a screen to render them on so testing that they render and 
have the correct texture is difficult without having a screen creation and rendering system. 
As a result, it can be hard to separate these types of testing. We have laid our testing for this 
section out in a table to make information for each test easily accessible. To improve our 
testing and make it easier to reference we have given each test an identifier and identified 
which requirement the test tests. In addition, we included a column explaining the tests, one 
explaining their results and one explaining the reaction to a test if one was needed. We 
believe this was a clear layout and contained a good amount of information on each test. 
Requirements referenced can be found here: 
https://lloydbanner.github.io/SEPR-Team-7/Req1.pdf. 
 
Non-functional requirements 3.0, 4.0, 5.0 and 7.0 haven’t been tested. These requirements 
are subjective and would require a sample audience to test effectively. Some of these 
features aren’t currently implemented or have very little implementation so they aren’t worth 
testing yet. These will be tested in later assessments when it is more appropriate. These 
features aren’t currently implemented as they weren’t required for this assessment and the 
team didn’t have time to finish them for this deadline.  
 

Test ID Requirements 
Tested 

Test Result  Reaction 

T1.0 F2.0 Collisions with 
power up. 
Tested by 
walking into 
power-ups 
within the game 
from various 
directions and 
checking that 
they interacted 
after a collision. 

Left:  interacts 
correctly 
Right: interacts 
correctly 
Top: interacts 
correctly 
Bottom: 
interacts 
correctly 
Top-Right: 
interacts 
correctly 
Top-Left: 
Bottom-Left: 
interacts 
correctly 
Bottom-right: 
interacts 
correctly 

No reaction 
needed. The 
collisions work 
as required. 
When the 
player touches 
the item it is 
activated. 

T1.1 F2.0 Testing 
power-up has 

Health 
power-up: 

Checking why 
the player was 

https://lloydbanner.github.io/SEPR-Team-7/Req1.pdf


 

required effect 
after collision. 

Heals player 
more than 
required 
Shield 
power-up: 
makes the 
player invincible 
for 10 seconds 
as expected. 
Speed 
power-up: 
Speed player 
up for 10 
seconds as 
expected. 

healed more 
than required. 
Many health 
power-ups were 
stacked on top 
of each other 
resulted in the 
player being 
healed more. 
With one power 
up it works 
correctly. 

T2.0 F6.0 Playing the 
game to check 
that it runs and 
the camera is 
from a 2D 
top-down 
perspective. 

Running the 
game it is 2D 
and all sprites 
and models are 
2D throughout. 

None needed. 
May need to 
test again after 
the game has 
been 
completed. 

T2.1 F6.1 Testing that 
while playing 
the camera is 
locked to follow 
the player. 

Player is always 
in the centre of 
the screen after 
movement in 
any direction or 
after collisions 
in any direction. 
 

None needed. 
May need to 
test again if new 
features are 
implemented 
that could affect 
this. 

T3.0 F7.0 Testing that at 
any time in the 
game pressing 
esc will bring up 
the pause 
menu. 

Works at any 
point in the 
game, apart 
from after the 
game is won. 
When the game 
is won pressing 
escape toggles 
the win screen. 

May need to 
change this as 
the exit button 
for the game is 
on the pause 
screen. 
However, the 
win screen is a 
paused version 
of the game. 
Going forward it 
might be worth 
it to reevaluate 
how this is 
implemented. 

T3.1 F7.2 Testing that the 
controls can be 

The controls 
screen is 

Currently works 
but will need to 



 

accessed at all 
times. 

available at any 
time the game 
can be paused, 
however, it 
currently 
doesn’t have 
the controls on 
it. 

be retested if 
other controls 
are added.  

T4.0 F8.0 Checking that 
the health bar is 
visible to the 
player in all 
game states. 

When playing: 
visible 
When paused: 
visible 
When health is 
zero: visible 
When game is 
won: visible 

None required, 
health bar and 
GUI are visible 
at the required 
times. 

T4.1 F8.1 Checking if the 
player can be 
attacked when 
they respawn. 

The player isn’t 
usually attacked 
when they 
spawn, but they 
can attract 
zombies to the 
spawn location 
or over time 
they can 
wander to 
spawn. 

A way of 
making sure the 
player is safe 
when they 
spawn needs to 
be 
implemented. 

T5.0 F11.0 Playing the 
game and 
testing that the 
combat acts in 
real time. 

Combat is in 
real time, you 
can fight the 
zombies and 
they will attack 
you in real time. 
Pausing the 
game can’t be 
used to make 
this feel turn 
based 
effectively. 

None needed. 
Functioned as 
required. 

T6.0 NF1.0 Playing the 
game and 
checking that 
areas that 
resemble the 
university can 
be reached. 

Buildings and 
their interiors 
look like areas 
from the 
campuses at 
the university. 

None required. 



 

T7.0 NF2.0 Playing through 
the game and 
checking that all 
areas of the 
game run on a 
university 
computer. 

All areas run 
appropriately on 
a university 
computer. 

None required, 
will need to 
retest if new 
areas are 
added. 

T8.0 NF6.0 Playing through 
the game and 
checking that it 
doesn’t crash in 
normal 
gameplay. 

The game 
doesn’t 
currently crash 
while playing. 

None required, 
but new 
features could 
easily change 
this. 

T9.0 F1.0 Playing the 
game various 
times and 
checking there 
are three player 
types. 

There are 
currently only 
two player 
types, but more 
will be added in 
later 
assessments. 

Added a third 
player type in 
the next 
assessment. 

T9.1 F1.1 Playing the 
game to see if 
the Computer 
Science student 
player type is 
available and 
functions 
correctly. 

This class is 
currently not 
available, but 
will be added in 
the next 
assessment. 

Add Computer 
Science 
Student player 
type. 

T9.2 F1.2 Playing the 
game to see if 
the Drama 
student player 
type is available 
and functions 
correctly. 

Drama student 
is available and 
can disguise as 
a zombie 
effectively.  

None required. 

T9.3 F1.3 Playing the 
game to see if 
the Sports 
Player player 
type is available 
and functions 
correctly. 

Sports player is 
available, but 
only has 
increased 
damage and not 
increased 
speed. This 
wasn’t added as 
increased 
speed made the 
game to easy 

Add a different 
ability for the 
sports player to 
make gameplay 
more 
interesting. 



 

as a sports 
player. 

T10.0 F3.0 Looking for the 
minigame within 
the game and 
checking it 
functions.  

The minigame 
currently isn’t in 
the game. 

This will be 
added to the 
game in future 
assessments. 
We believed it 
would be best 
to wait to 
implement this 
as no other part 
of the game 
relies on it. 

T11.0 F4.0 Playing the 
game and 
counting the 
number of 
locations the 
player goes 
through. 

3 locations are 
currently 
traveled to. 
These include 
Heslington 
West, east and 
Computer 
Science. 

Other locations 
will be add in 
further 
assessments. 

T11.1 F4.1 Counting the 
number of 
areas with 
buildings in 
within the game 
while playing. 

Heslington west 
and Heslington 
east areas are 
in the game 
with the 
buildings in 
these areas. 
However, only 
computer 
Science is 
accessible.  

Other buildings 
will be 
accessible in 
the next 
assessment as 
there wasn’t 
time to add 
more than three 
locations in this 
assessment. 

T12.0 F5.0 + F5.1 Counting 
bosses and 
checking they 
function 
correctly while 
playing. 

No bosses are 
currently 
implemented. 

Bosses will be 
implemented in 
the next 
assessment. 
We left them 
out of this 
assessment to 
prioritize the 
required 
implementation
s. 

T13.0 F9.0 Playing through 
the game to see 
if there is a 

There is 
currently only 
one zombie 

New zombies 
will be 
implemented 



 

variety of 
enemies and 
that they 
function 
differently.  

type. later, these 
shouldn’t be 
hard to 
implement and 
will just require 
variations on 
the same 
object. 

T14.0 F10.0 Playing the 
game and 
checking if an 
intro plays at 
the start. 

No intro plays at 
the moment. 

Intro will be a 
short text 
section and 
shouldn’t be 
hard to 
implement so 
we decided it 
wasn’t 
important to add 
currently.  

 
 
White box testing- 
Our white box tests completely comprised of Junit tests. These allowed us to make 
sure functionality did not change while we were quickly iterating through versions of 
our game. As mentioned in the testing introduction LIBGDX did not allow us to make 
a huge amount of unit tests so we have created what we can with the given 
architecture.  
 
Test ID Requirement 

ID  
Test Result Reaction 

T16.0 F2.0 Unit test that 
checks if 
health item 
restores 2 
health. 

Pass - 
shown in 
appendix 

None required 

T16.1 F2.0 Unit test that 
checks if 
health item 
increases 
health above 
max health. 

“” “” 

T17.0 F2.0 Unit test that 
checks if 
speed item 
increase 

“” “” 



 

speed the 
correct 
amount. 

 
 
 
 
 
 
References 
[1] I. Sommerville , Software Engineering, edition: 9, pp. 216-221, available: 
https://edisciplinas.usp.br/pluginfile.php/2150022/mod_resource/content/1/1429431793.203
Software%20Engineering%20by%20Somerville.pdf 
 
 
 
 
 
 

Appendix 
 
SpeedConsumableTest- 

 
 
 

HealthItemTest- 

https://edisciplinas.usp.br/pluginfile.php/2150022/mod_resource/content/1/1429431793.203Software%20Engineering%20by%20Somerville.pdf
https://edisciplinas.usp.br/pluginfile.php/2150022/mod_resource/content/1/1429431793.203Software%20Engineering%20by%20Somerville.pdf

