
Software Testing Report

Summary of Testing
We decided that we would follow a test driven development approach, this allowed us to
refactor and add code confident we did not change or break functionality. This approach fit
well into our overall scrum development approach, it meant that team members could work
more autonomously as they could test if their code integrated well without the need of other
members. Following Sommervile [1], our testing process had two main goals, to demonstrate
requirements have been met and to discover defects in the software. When we started initial
planning and designing our tests, we decided it would be important to establish how we
would establish a ranking of their importance. This ranking would allow us to decide how to
prioritize as we have very limited time and it would take too long to test everything. The most
important features contributed to core functionality and main requirements, eg. GameFlow
features and character movement.

We decided on using a variety of different testing methods, including black box, white box,
dynamic and static testing. Our white box testing was comprised full of Junit test cases,
these were used for testing many features and classes however we felt that some features
could be tested without. For each of our features and requirements we evaluated how
appropriate each of the testing methods would be. LIBGDX gave us some issues regarding
this as there were some methods and classes we wanted to unit test but could not as many
sections depended on textures that wouldn’t load in the unit tests. This resulted in a lot more
black box testing that we would have liked as black box testing can be less reliable and
takes much longer than unit testing. However we made sure they would be as reliable as
possible by testing many features many times in edge case scenarios.

Unit testing is very appropriate for our stage of implementation. We are quickly iterating so
this allows tests to be performed quickly after project members make changes. This makes
sure no dependencies have been broken when code has been changed. As a result,
problems that break previous code can quickly be removed. Our black Box testing method is
also appropriate as it allows us to visualize the problem using our graphical version of the
game. However, this method takes much longer than unit testing so isn’t appropriate to use
as regularly.

Brief Testing Report

All tests referenced can be found in our Testing material document [2]. The tests that have
failed have mostly done so because we have not implemented certain features or classes.
Test T4.1 failed as we have not yet implemented a way to guarantee player safety after
respawn. To pass this test we need to implement some kind of timed invincibility, similar to
the shield item, on spawning. Test T9.0 and T9.1 failed as we have only implemented 2 out
of the required 3 player classes. To pass 9.0 we need to implement a third class, and to
pass 9.1 this class must be a correctly functioning computer science student. T10.0 fails as
we have not added a mini game. This can be fixed by adding a mini game, we didn’t add one
this assessment due to lack of time. T11 failed as we only have 3 locations currently. This is
because we did not have time to add in more that 3 locations. We can fix this by adding

more buildings that users can enter. T12 failed as we have not yet implemented bosses,T13
fails for the same reason as we only have one enemy type. This can be fixed by
implementing 2 boss classes. T1.0 passed and is complete as it tests all possible
interactions a user could have with each of the power ups. T2.1 passed, however it is
possible that there are edge cases that could have been missed however this is very unlikely
as we have done many tests, each testing it has passed. T3.0,T3.1 and 4.0 passed, similar
to the previous test there could be edge cases where these fails, however it is very unlikely
as we have tested this many time over many scenarios.
None of our unit test failed. HealthItemTest tested for when a player had been damaged and
that it resorted the correct amount of health, it also tested to make sure that it did not
increase the health above the maximum health. SpeedItemTest made sure that the players
speed was increased by the correct value. Which is complete as if this passes it achieves
the result we want from a speedItem.

[1] I. Sommerville , Software Engineering, edition: 9, pp. 206, available:
https://edisciplinas.usp.br/pluginfile.php/2150022/mod_resource/content/1/1429431793.203
Software%20Engineering%20by%20Somerville.pdf
[2] URL for Testing Material: https://lloydbanner.github.io/SEPR-Team-7/Testing2.pdf

https://edisciplinas.usp.br/pluginfile.php/2150022/mod_resource/content/1/1429431793.203Software%20Engineering%20by%20Somerville.pdf
https://edisciplinas.usp.br/pluginfile.php/2150022/mod_resource/content/1/1429431793.203Software%20Engineering%20by%20Somerville.pdf
https://lloydbanner.github.io/SEPR-Team-7/Testing2.pdf

