
Shaun of the Devs

Requirements
Shaun of the Devs Changes
To allow us to incorporate our new requirements we had to change various requirements and add new ones to the requirements documents. Removed sections are
highlighted in red and added sections in green. These requirements are based on Geese Lightning’s old requirements [1] from assessment 2 as Yeezy Games didn’t change
the requirements in assessment 3. We have continued to follow a similar requirements elicitation method to Geese Lightning as we believe their method was sufficient and
we don’t have significant enough new requirements to completely change the method.

Requirements Elicitation, Negotiation, and Presentation
First we met to discuss the basic requirements and mechanics of our game. These were decided in reference to the scenario brief provided which was ambiguous. Thus our
initial requirements were also ambiguous. Once we had these requirements we met with the stakeholders to discuss them. This meeting allowed us to confirm the basic
functionality of the game before going into too much detail so we didn’t have to change many requirements later in the development process.

We did research into what makes a good requirement and methods for extracting them. As a result we made sure that all our requirements were correct, unambiguous,
consistent, ranked for importance, verifiable, modifiable, and traceable [3]. The main methods we used were interviews/meetings with stakeholders, meetings between the
development team, prototyping, and user stories.

After our first meeting with the stakeholders, we began to specify our requirements. Our team met multiple times to agree upon more detailed requirements. We started
creating some concept art and paper prototypes of the different screens in the game [4] which itself inferred some requirements and was useful to spark discussions in
meetings with stakeholders. After this we created some simple user stories to outline some of the basic functionality of the system [5], such as navigating menus. Thinking
about what users might want to do with our system within context gave us more ideas for requirements.

Finally, we decided to interview the stakeholders again to verify our more specific requirements before presenting them formally. In each meeting with stakeholders we
took rough notes and then wrote them up [6] for later reference. Once we had our final requirements presented formally we had a group discussion where we went through
each requirement separately looking for any inconsistency or conflicts.

Shaun of the Devs

Our statement of requirements is based loosely on the software requirements specification (SRS) template [2]. This template is designed to work with a large projects and
as a result goes into a lot of detail, with many subsections. Due to the size of our project some of the sections outlined in the template are not necessary and have been
omitted. We formatted our requirements in a table to make them easier to navigate. Our table has an additional column for a fit criteria to make sure our requirements were
testable [3]. The requirements table is split up into external interface, performance, function, and non-functional requirements and then ordered by importance within each
group of requirements. Keywords must, should, and could highlight the importance of each requirement.

Requirements Table
Scope
The software being developed is a small zombie apocalypse themed game set in the University of York. It should be playable at University open days and UCAS events. The game will
require you to clear out various stages of zombies before progressing to the next stage and furthering the story.
User Characteristics
Typical users will be college students visiting for open days and students within our cohort at the University. So the typical user will be between the ages of 17-21. These students will be
either studying Computer Science or otherwise interested in the degree so we can assume they have good technical skills but to make it accessible to all it should be easy to use.
Document Conventions
P (performance requirements), E (external interface requirements), F (functional requirements), and N (non-functional requirements).

Colour Key: Requirement Removed for Assessment 3 Requirements Updated for Assessment 4

ID Requirement Fit criteria Rationale and Assumptions Risks and Alternatives

P1 The game must run on Windows 10 in
Java.

P1.1 - The computer boots into Windows
10.
P1.2 - Java is installed on the computer.
P1.3 - The source code is written in Java.

All the computers in the computer
science building have Windows 10 and
Java installed.

P2 The game must run smoothly on the
university computers.

P2.1 - The game runs at a minimum of 30
frames per second at all times.
P2.2 - The game responds to user to input
within 25ms.

The computers are powerful enough to
achieve this.

The game is more difficult to run than
anticipated.

Simplify graphics and animations.

Shaun of the Devs

E1 The user must be able interact with the
system using an input system available to
university computers.

E1.1 - The user can navigate the menus.
E1.2 - user is able to move their
character.

All university computers have both a
keyboard and mouse already plugged in.

Learning curve for using the system.
Include tutorial missions.

E2 The system must provide feedback to the
user.

E2.1 - There must be some visual output
from the system.

All university computers are connected to
a monitor.

F1 The game must be split up into six
locations (different stages) which each
have a few waves of zombies.

F1.1 - The game returns you to the stage
select screen once you complete a stage.
F1.2 - Zombies are spawned at the start
of each wave.

“There must be at least six locations in
the game” (taken from the brief).

The user gets bored of one location if
they spend too long there.

Make the stages shorter but this could
have the opposite effect of the game
being too quick. [7]

F2 The game must get progressively more
difficult.

F2.1 - More zombies are spawned in later
waves and stages.
F2.2 - More difficult zombie types are
spawned at later waves and stages.

The user gets better and has access to
power-ups and better weapons so the
game needs to compensate for this.

“The difficulty of the game should
increase with each successful location
visit” (take from the brief).

The game gets too difficult to complete.

Don’t increase the game difficulty as
much. This could make the game too
easy and boring. We need to find a
balance. [6]

F3 There must be three different player types
the user can choose to play as with
different abilities.

F3.1 - The different player types have
different stats. e.g. run speed, hit points
F3.2 - The different player types have
special abilities. e.g weapons, armour

“There must be at least three different
types of player with different attributes”
(taken from the brief).

The game could become unbalanced. [6]

Reduce how different the player types
are., but that could make the player types
redundant.

F4 There must be at least 3 zombie types
(based on societies) with different
abilities.

F4.1 - The different zombie types have
different stats. e.g. run speed, hit points
F4.2 - The different zombie types have
special abilities. e.g weapons, armour
F4.3 - Each zombie type must reference a
university society. (Zombie types of
inherited game didn’t do this.)

There are a lot of different societies in the
university.

The need for at least three zombie types
was discussed in our second meeting with
stakeholders [5].

Can take a lot of time to design as the
zombie types must be clearly distinct
from each other.

F5 There must be a mini game, completely
different from the main game.

F5.1 - The mini-game has a different
objective to the main game.
F5.2 - It is playable from the main menu.

“There should be a mini-game,
completely separate from the main game”
(taken from the brief).

Takes the user out of the game ruining
immersion. [8]

It should make sense in the context of the
game.

F6 There must be at least five different
power-ups which are sometimes dropped

F6.1 - One power-up is dropped at the
end of every wave.

“There must be at least five different
power-ups” (taken from the brief).

The power-ups make the game too easy.

Shaun of the Devs

when a wave is completed. F6.2 - When a power-up is dropped it is
selected randomly from all the
power-ups.

 Change the frequency of the power-ups
being dropped.

F7 There must be two bosses. One half way
through the game and one at the end.

F7.1 - The third and sixth stage finish
with a boss.

“There should be at least two big bad
bosses” (taken from the brief).

Producing fun but challenging bosses can
be difficult.

F8 The game must be able to be saved and
then reloaded at any time between levels.

F8.1 - The game state is encoded into text
to be stored in a plain text file.
F8.2 - Loading a game save returns the
game to the exact state it was in when it
was saved.

The university computers have storage.

This allows the user to complete the
game without having to do it all in one
go.

Could make it easy to cheat by editing
the save file.

F9 The zombies must seek out the player and
do damage when they are within range
and the player is not a zombie.

F9.1 - The player loses a number of hit
points depending on the zombie type.
F9.2 - The player loses the number hit
points every second the zombie is within
a distance of 20 from the player.

 AI controlled units can take long to
design.
May cause multiple bugs to pop up due to
unexpected movement of the zombies.

F10 The player should do damage to a zombie
or non-zombie when they are in range,
are not in the same zombie state and the
user attacks in the correction direction.
Where zombie states are zombie or
non-zombie.

F10.1 - The zombie character loses a
number of hit points depending on the
weapon the player is using.
F10.2 - The zombie character loses a
number of hit points when the user clicks
in the direction of the zombie character as
long as it is within the range of the
weapon. Range represented as a sector.

 Collision detection can take time to
implement and if not implemented
correctly, can cause bugs or ruin the
game experience.

F11 When the player dies they become a
zombie. They then continue the level as a
zombie.

F11.1 When player health is zero they
become a zombie and their objectives
changed to accomodate this.
F11.2 After completing the level as a
zombie, the zombies overrun the
university.

New requirements say the player must be
able to become a zombie and the
storyline must accommodate this.

Adding this new functionality could
break code that depends on the classes
affected. Using tests will allow us to
detect and prevent this.

F12 Non-zombie characters must be added to
the game.

F12.1 Zombies should be able to attack
non-zombies as well as the player. When
a non-zombie dies they become a zombie.
F12.2 There should be a cure item that
will cure zombies within an area when
picked up.
F12.3 Non-zombies left at the end of a
level will improve player score

New requirements say there must be a
new item which transforms zombies in to
non-zombies. Non-zombie NPC must be
added to accommodate this.

New systems will be required and many
classes may need to be changed to make
this work. Using unit tests will allow us
to prevent this from breaking the
program.

Shaun of the Devs

N1 The game must be easy to learn to play. N1.1 - There is a controls option in the
user manual.
N1.2 - The game starts with a tutorial
mission.

The brief explains the game should be
playable at open days and UCAS days.
These would typically be short sessions
so the game must be able to picked up
easily.

Users haven’t played a game with similar
controls before.

Include the very basic controls in the
tutorial mission. Include the option to
skip so the user doesn’t get bored.

N2 The user must clear all stages and bosses
in order to complete the game.

N2.1 - Once a stage is completed the next
stage is available to play.
N2.2 - Once the final stage is completed
the game is completed.

“The game is won when they player visits
each location at least once and the big
bad bosses have been defeated” (taken
from the brief). Since our game will use
locations as stages we decided that each
all locations must also be cleared.

N3 The different zombie types and player
sprites should all be distinguishable from
each other.

N3.1 - All sprites are different in design.
They have different colours and features.

Our paper prototypes highlighted this
issue [3].

The screen could look cluttered.

Include a visual aid to point out user’s
player sprite.

N4 The game should guide the user through
the story.

N4.1 - There are text prompts to give the
user story information.

Our first meeting with the stakeholders
made clear the need for a unique selling
point. We had an idea for an interesting
story which the stakeholders agreed to in
our second meeting [5].

Too much help can make the game too
easy or ruin the game experience for the
user. [8]

Making set guides part of the world
environment (such as signposts) [8]

N6 The game could have an 8-bit aesthetic. 8-bit graphics will restrict the amount of
gore making sure it is suitable for open
days [5].

Producing the graphics takes time.

References
[1] “Geese Lightning Requirements” [Online]. Available: https://drive.google.com/file/d/1vr9Qq7EU2rcqsxOB8uAZA9nS6YLWn-rH/view [Accessed: 28- Feb- 2019]

[2] IEEE Software Engineering Standards Committee, “IEEE Std 830-1998, IEEE Recommended Practice for Software Requirements Specifications”, October 20, 1998.

[3] "A Fit Criterion Is A Test", www-ist.massey.ac.nz [Online]. Available:
http://www-ist.massey.ac.nz/plyons/158.360/essays/3b%20Volere_Templates/A%20Fit%20Criterion%20Is%20A%20Test.htm [Accessed: 29- Oct- 2018].

[4] “Geese Lightning Prototypes” [Online]. Available: https://drive.google.com/a/york.ac.uk/file/d/1Uy4ibuuzl1YmKniKU0XVSeuUqYk8AwYZ/view?usp=sharing
[Accessed: 29- Oct- 2018].

https://drive.google.com/file/d/1vr9Qq7EU2rcqsxOB8uAZA9nS6YLWn-rH/view
http://www-ist.massey.ac.nz/plyons/158.360/essays/3b%20Volere_Templates/A%20Fit%20Criterion%20Is%20A%20Test.htm
https://drive.google.com/a/york.ac.uk/file/d/1Uy4ibuuzl1YmKniKU0XVSeuUqYk8AwYZ/view?usp=sharing

Shaun of the Devs

[5] “Geese Lightning User Scenarios” [Online]. Available:
https://drive.google.com/a/york.ac.uk/file/d/1W9lrv_nXuLEZJZ4EsMifbz5BRRyQK3P_/view?usp=sharing [Accessed: 29- Oct- 2018].

[6] “Geese Lightning Stakeholder Meetings” [Online]. Available:
https://drive.google.com/a/york.ac.uk/file/d/1E_7OdAomfFnTmGmsMgkiHfaOYjVK1sQ3/view?usp=sharing [Accessed: 30- Oct- 2018].

[7] Harvey Smith, “Designing Enemies with Distinct Functions”, www.gamasutra.com [Online], Available:
https://www.gamasutra.com/view/feature/131735/designing_enemies_with_distinct_.php?print=1
[Accessed: 05- Nov- 2018]

[8] Mike Stout, “A Beginner’s Guide to Designing Video Game Levels”, https://gamedevelopment.tutsplus.com [Online], Available
https://gamedevelopment.tutsplus.com/tutorials/a-beginners-guide-to-designing-video-game-levels--cms-25662
[Accessed: 05- Nov- 2018]

[9] Jamie Madigan, “Analysis: The Psychology of Immersion in Video Games”, http://www.gamasutra.com [Online], Available
https://ubm.io/1rObYeZ
[Accessed: 05- Nov - 2018]

https://drive.google.com/a/york.ac.uk/file/d/1W9lrv_nXuLEZJZ4EsMifbz5BRRyQK3P_/view?usp=sharing
https://drive.google.com/a/york.ac.uk/file/d/1E_7OdAomfFnTmGmsMgkiHfaOYjVK1sQ3/view?usp=sharing
https://www.gamasutra.com/view/feature/131735/designing_enemies_with_distinct_.php?print=1
https://gamedevelopment.tutsplus.com/tutorials/a-beginners-guide-to-designing-video-game-levels--cms-25662
https://ubm.io/1rObYeZ

