
Requirements
We are creating a fun single player zombie game based at the University of York campus. It
will be a top-down 2D game where players will collect objective items that once all together
will allow the player to reach a final boss and finish the game. The game will be in a pixel art
style similar to SNES or Gameboy games. Players will also be able to collect power-ups,
weapons and consumables throughout the game and will also be able to play a mini-game
within the game when they are at a certain location.

Elicitation and negotiation:
We identified that there were going to be two main groups of requirements, first the ones
which were explicitly extracted from the brief given by the client. The second group is those
which we have extracted from our game idea which we had to design within the restraints of
the scenario.
When looking through the brief we started by extracting requirements that were very clearly
stated by the client e.g. "there must be at least three different types of players". We then
discussed and came to a collective interpretation of any incompleteness or ambiguities
contained in the brief. After finishing the first draft of our requirements a meeting with our
client was held to discuss what they thought of our first draft of requirements and to answer
some of our questions. One of our main takeaways from this meeting is that our
requirements must not be vague and must be testable, it was also pointed out that we need
to add more requirements specific to our game idea. To help us get a clearer picture of what
we wanted our game to look like we researched games that we enjoyed and took ideas from
many of them. We have used some features in these games to craft requirements and can
validate these requirements based on the success of these games.
After we finalised our requirements we took a paper prototype to discuss with the client and
took them through a barebones user experience of our game. We discussed the things that
we should change and the things that were good, this discussion was very helpful for
validating many of our requirements.

Research for Specification and Presentation:
While researching requirements specifications we found that IEEE has a recommended
practice for software requirements specifications [1]. Most of our method for making good
software requirements and presenting them came from this. As a result, we gave each
requirement a unique ID to make them easily referenceable. We made the requirements
consistent with the assessment specification, scenario and elicited requirements. Also, we
made sure that there was no inconsistency with our requirements. Furthermore, we made
sure that each requirement was testable in an effective way, this means each requirement is
an achievable goal. All of our requirements were stored in a modifiable way allowing them to
be changed as the project evolves. We tried to reduce ambiguity in the requirements so that
everyone could understand them. We also, prototyped our user interface to check that all
features were accessible and visible to the player to improve our requirements for it. These
processes have allowed us to make a more usable and readable requirements specification.
Our requirements are presented in tables split up into Functional and Non-Functional
requirements.

Functional Requirements (F):

ID User requirement System requirement Justification Alternatives (A)/ Risks (R)

1.0 Player has the option of
at least 3 different class
types.

At the start of a new game, display
the choices for each class, save the
chosen class and update the player
variables dependant on this. Each
class will have a different experience.
They will have a clear description
before selection.

This is clearly specified
in the scenario
document, varied
classes will allow for the
game to be enjoyed for
longer.

(R) Risk that players won’t
find classes to be very
unique and won’t get much
of a new experience when
choosing a new class.

1.1 Computer science
student class.

Social awkwardness ability could
scare zombies away

Many users will relate to
this at CS open days

1.2 TFTV student class. Ability to disguise as zombies and
sneak past them.

Provides different
gameplay

1.3 Sports player class. Stronger and quicker than other
classes.

Provides different
gameplay

2.0 At least 5 different
power-up options must
be available for the
player to pick up during
the game.
(could include weapons)

Power-ups must all have an equal
chance of spawning at allocated
locations. Must give players a
different experience for each power
up.

This is required by the
client. This could allow
for more gameplay
variety.

3.0 There must be a
mini-game within the
game.

The system must detect when the
player is at a certain location to
induce the mini-game. The minigame
will have significantly different
gameplay than the main game.
Goose hunt(duck hunt clone)

This is clearly specified
in the scenario
document.

(R) Could be hard to make
a game similar to Duck
Hunt.
(A) Could use a different
type of minigame if this is
hard to make.

4.0 There must be a
minimum of 6 locations.

The system must be able to quickly
render a large map and use a
method for transitioning between
east and west campus.

This is clearly specified
in the scenario
document.

(R) Could take a long time
to create an open world.
(A) Have a linear
progression where you
have a set path.

4.1 There will be two areas in
the game each with 3
locations.

These areas will be Campus West
and East and the player will be able
to travel between the two after
receiving the bus pass item. Could
have all three locations in an area
accessible when the player arrives.
Allowing the player to gather the
tools to get to the boss in any order.

6 locations are required
by the client that are
based around the
University of York.

(R) Could take a long time
to create two campuses.
(A) Locations could be
accessed in order, allowing
for easier difficulty scaling
and less time to create
open areas.

4.2 Computer Science, Ron
Cooke Hub, Constantine,
Central Hall, Market
Square/Nisa.

While outside the building it must be
a static model with a door that allows
the user to enter.

A familiar location could
be more fun for players.

(R) Could be hard to model
certain buildings in a 2D
style.

4.3 Biology. The story is based from
here.

4.8 The difficulty will scale
with each location that is
cleared.

After getting the required item from
each location Zombies will become
more aggravated. This may increase
zombie speed, frequency or damage.
At the start of the game, zombie
frequency will be relatively low.

The difficulty is required
to increase with each
location cleared by the
client.

(R) Difficulty could become
too difficult making the
game less enjoyable.
(A) Each location could
have harder enemies than
the last.

5.0 At least two bosses
included in the game.

Must implement two enemy
characters that are much more
difficult to beat than the regular
enemies.

Bosses will provide a
good challenge to the
player but will be fun to
beat. The client also
requested them.

(A) If the player dies a lot
reduce the difficulty of the
boss.

5.1 Bosses should be based
on lectures/university
administration.

One at the end of each campus. The
one at the end of the first campus will
drop a bus pass allowing the player
to progress to the next area.
1st boss - Colin Runciman/ Mike
Freeman 2nd boss- Jeremy
Jacobs/Vice-chancellor.

This will add to the
enjoyment of the game
for our audience as they
are mostly uni of york
students.

(R) Could cause offence to
university staff.

6.0 The game should be in
2D and should be from a
top-down perspective.

The game’s camera should be a
reasonable distance away from the
player allowing the player to see a
good area around them.

This will be possible in
the time constraint.
Many successful games
such as Pokemon use
this perspective.

(A) Could use a side on
perspective.

6.1 The camera should follow
the player from above.

Fix the camera to the player model. This will make the
movement
understandable to a
new player.

The motion of the player is
equal to the camera’s
motion.

7.0 The user should be able
to pause the game at any
point.

Freeze all models and display the
pause menu after a single key press.

Allows the player
convenience to pause
and save anywhere.

(A) Have a safe room
where the player can stay
to go AFK.

7.1 The user should be able
to save the game at any
point.

The current game state must be
stored in a file that can be read from
and loaded at the start.

Discussed with the
client. Allows players
the flexibility to leave at
any point without losing
progress.

(R) Save file could become
corrupted or lead to an
error when loaded.
(A) Have an autosave
feature.

7.2 Control mappings should
be available for the
player to find at any time
either through hints at the
start or in the menu.

Controls clearly shown to the player
when they start a new game.
Controls also similar to other games
eg. WASD.
The player should be able to change
key binds.

Allows the game to be
more accessible for use
on open days. This
allows a wider audience.

(A) Have the controls be
viewable in the pause
menu.

8.0 The player’s health bar
must be displayed in the
top corner of the GUI. All
features on the GUI
should be visible so that
no features are hidden
from the user.

The system must always store the
health bar’s current state and as the
player is damaged or healed, the
health bar must update. Other
features should update quickly so
that the user always knows what is
happening.

Players make different
decisions based on
health. From
prototyping, we
determined that the
features need to be
visible.

(A) Health could be
displayed as percentage or
bar.
(A) anything that isn’t
always visible in the GUI
should be visible when
gameplay requires it.

8.1 The player must be safe
when they start the game
or after they respawn
when they die.

When the player's health reaches 0
they should respawn in a safe
location. The player will start in a
safe room at the beginning of the
game and will respawn in the closet
safe room when they die.

This will prevent the
game from becoming
too difficult or frustrating
for the player. Many
successful games do
this.

This will prevent the game
from becoming unfair.
(A) Could also make the
player invulnerable after
dying for a short time.

9.0 Multiple unique enemy
types.

As the difficulty increases the variety
of enemies with different mechanics
will start to increase.

For our experience with
games in the past, this
will keep the game
interesting.

(A)Just increasing health,
damage and/or numbers in
the zombie horde.

10.0 The introduction needs to
be shown to the player at

Display visuals along with text
describing the story behind the

Players shouldn't feel
lost at the start of the

(R) Player accidentally
skips the story.

the start of a new game. game. This will be skippable. game. Gives players a
purpose.

11.0 Combat should be in real
time.

A player with different weapons and
abilities must have different damage
and range.

This will hopefully create
interesting gameplay.

(R) Could be harder to
implement turn-based
combat.

Non-Functional Requirements (NF):

ID Requirement System Requirement Justification Alternatives (A)/ Risks (R)

1.0 The map must be based
on real locations in the
University of York.

The game must incorporate locations
from any of the campuses in the
University.

This is clearly specified
in the scenario
document.

(R) Could be harder to
model real University
buildings.

2.0 The game must be able
to run on a standard
University PC.

OS: Windows 10 64-bit
Processor: Intel Core i5-8500
Memory: 16 GB RAM
Graphics: Intel UHD Graphics 630
DirectX: Version 12

The game will be used
for University open
days, so will run on
University computers.

3.0 It must be easy to pick up
for new players and have
a friendly user interface.

The controls should be easy to use
and pick up, involving traditional keys
for a computer game.

Players will not enjoy
the game if they don’t
know how to play.

4.0 The game should be up
to the standard of the
university to represent it
at open days.

There must be clear instructions and
no complex mechanics required to
learn.

This is a constraint
clearly specified in the
scenario document.

5.0 The game should be
visually pleasing.

Game’s graphics must look relatively
similar with custom designs looking
similar to that of any assets used.

The game will appeal to
a larger audience.

(R) Useful assets may be
difficult to design.
(A) Design everything
ourselves.

6.0 The game shouldn’t
crash during gameplay.

Situations where errors could occur
need to be accounted for.

Crashes and bugs
would reduce the
enjoyment of the game
and take the player out
of the experience.

(A) Having low
specifications for the game
to run.

7.0 There must be an
interesting selection of
music and sound effects
for the game.

We will use varied sound effects and
music. The same sounds won’t be
repeated regularly.

Give a better feel to the
game and make it more
attractive.

(R) Music loops played
over the game would
become too repetitive and
become less pleasant to
listen to.

Bibliography:

[1] ​IEEE, 830-1998, "IEEE Recommended Practice for Software Requirements
Specifications", 1998.

