
Evaluation 
 
 
For this assessment we were assigned a new set of requirements, and to ensure that these 
were all implemented fully we added additional tests to our requirements testing document 
[1]. We broke down the requirements given into smaller requirements that when all met 
would fulfil the new requirements. This made it easier to incrementally test our game as it 
meant we would not have to wait until the end of implementation to test requirements. This 
played well into the test driven development approach our team has been following for this 
project.  
 
An important consideration in our evaluation was to ensure no previously existing 
requirements had been broken during the addition of our new requirements. To do this we 
went through the existing requirements tests and made sure that all of these were still 
passing. This was particularly important for many of the functional requirements as when 
adding lots of new functionality it is easy to accidentally break or change existing code.  
 
As this testing was to be the last as were were creating a final product we took extra care 
doing our requirement testing. We made sure that each of the requirements was checked by 
one team member and done again by another. If they did not get the same result we would 
test the requirement again with another team member. This extra care meant that we could 
be confident that the final product met the brief. We also wanted to make sure that we had 
not strayed too far from the original brief, so a couple of team member made sure to go 
through our requirements tests and cross reference them with assessment documents to 
make sure they matched up. Again as this was the last assessment we wanted to be certain 
that the product we were delivering met the brief. 
 
As we tested we updated our requirements testing table, noting whether the test had passed 
or failed and making a comment if anything had changed significantly from the last 
assessment. Green highlighted text showed new comments and Red highlights showed text 
that is no longer relevant.  
 
 
Testing-  
 
We continued to use a combination of black box and J-unit testing to make sure our code 
was of appropriate quality. However before doing any of these test we had to decide what 
we believed to be appropriate quality code. We decided that for our code to be of an 
appropriate quality it would have to meet a list of criteria. Though our research[2][3] we 
found there are many different metrics for measuring the quality of code and decided to 
follow some laid out by ISO 9126-1[3]. These are functionality, reliability, usability, efficiency, 
maintainability.  
 
Our group has used a combination of black box test and J-unit test to ensure proper 
functionality of our code. We continuously used these through our development, as per our 
test driven approach. J-unit test were used to test whether specific functions and classes 



functioned in a way that satisfied the requirements. We also used black box test for this 
same purpose. A combination of these two method ensured full test coverage of our 
functional requirements, all of these tests have passed so we are confident the functionality 
of our code is of appropriate quality. We found black box test particularly useful for the new 
requirements given as we found it difficult to encapsulate these requirements into unit test. 
The black box tests allowed us to easily test functionality such as requirement f11[4] , it is 
very obvious for a tester to know if they turn into a zombie after death and if the game in 
continuing. While we did not use j-unit test for the new requirements we continued to use the 
existing ones to ensure that none of the previous requirements were broke whilst 
implementing the new features.  
 
To test the reliability of our code we made sure each of the team went though and performed 
each of the black box test individually. The purpose of this was to increase our confidence 
that the code reliably worked for different users.  We would log failures and the conditions 
surrounding them to help debugging issues. For our final product non of the team members 
reported any failures when performing the test so we are confident the reliability of the code 
is of appropriate quality.  
 
As this is the final product we did not rigorously test the metrics of usability and 
maintainability to the extent of other metrics as nobody would inherit this code to use. 
However this did not mean we compromised on these two metrics. As we were only adding 
to inherited code and only had limited time we could not significantly change the architecture 
of the code. While this is the case the code we added was done in a modular and readable 
way. We are confident that the usability and maintainability of the code is of appropriate 
quality.  
 
One of the requirements for the final product is that is can be run on any university 
computer, we decided that this would be a good efficiency measure for the product. As our 
product satisfies this requirement we are confident our code’s efficiency is of appropriate 
standard.  
 
Given more time we would have liked to have been more rigorous with our testing. For 
instance we would have liked to design more unit test that cover more edge cases and have 
more people play test our product. However as I have described above we believe that the 
tests we have devised have sufficiently covered the main errors and most important 
functionality of our product. All errors that were flagged have been fixed and we believe that 
all of our testing has shown the product code and gameplay meets all requirements and is of 
a high standard.  
 
 
Testing result- 
 
 
Out of our black box test [5] only one of them failed this was 9.15. We decided that this test 
was too specific and did not accurately reflect what our requirements was asking of us. For 
this reason we designed a new test that more accurately reflected what the requirements 



were asking. This resulted in test 9.16 which passed. The rest of our Black box test passed 
on all tries. We ran all of our inherited all unit tests to make sure existing functionality still 
worked, these all passed.  
 
 
 
 
 
[1] - Shaun of the devs , ‘RequirementsTesting4’  [Online], April 2019, Available: 
https://lloydbanner.github.io/SEPR-Team-7/RequirementsTesting4.pdf 
 
[2] - Test institute, ‘What is software quality assurance’ , 2019, Available: 
https://www.test-institute.org/What_is_Software_Quality_Assurance.php 
 
 
[3]- ‘Software quality ISO standards’ [Online], 2008-2009, Available:  
 http://www.arisa.se/compendium/node6.html 
 
 
[4]- Shaun of the devs , ‘Requirements4’ [Online], April 2019, Available: 
https://lloydbanner.github.io/SEPR-Team-7/Req4.pdf 
 
 
[5]- Shaun of the devs , ‘BlackBoxTestingEvidence’ [Online], April 2019, Available: 
https://lloydbanner.github.io/SEPR-Team-7/BlackBoxTestingEvidence4.pdf 
 
 
 
 
 
 
 
 

https://lloydbanner.github.io/SEPR-Team-7/RequirementsTesting4.pdf
https://www.test-institute.org/What_is_Software_Quality_Assurance.php
http://www.arisa.se/compendium/node6.html
https://lloydbanner.github.io/SEPR-Team-7/Req4.pdf
https://lloydbanner.github.io/SEPR-Team-7/BlackBoxTestingEvidence4.pdf

